When calculating probabilities for a card game such as Texas Hold 'em, there are two basic approaches. The first approach is to determine the number of outcomes that satisfy the condition being evaluated and divide this by the total number of possible outcomes. For example, there are six outcomes (ignoring order) for being dealt a pair of aces in Hold' em: {A♣, A♥}, {A♠, A♦}, {A♠, A♣}, {A♥, A♦}, {A♥, A♠}, and {A♦, A♣}. There are 52 ways to pick the first card and 51 ways to pick the second card and two ways to order the two cards yielding (52×51)/2=1326 possible outcomes when being dealt two cards (also ignoring order). This gives a probability of being dealt two aces of .
The second approach is to use conditional probabilities, or in more complex situations, a decision tree. There are 4 ways to be dealt an ace out of 52 choices for the first card resulting in a probability of There are 3 ways of getting dealt an ace out of 51 choices on the second card after being dealt an ace on the first card for a probability of The conditional probability of being dealt two aces is the product of the two probabilities:
Often, the key to determining probability is selecting the best approach for a given problem. This article uses both of these approaches.
Contents[hide] 
[edit] Starting hands
The probability of being dealt various starting hands can be explicitly calculated. In Texas Hold 'em, a player is dealt two down (or hole or pocket) cards. The first card can be any one of 52 playing cards in the deck and the second card can be any one of the 51 remaining cards. This gives 52 × 51 ÷ 2 = 1,326 possible starting hand combinations. (Since the order of the cards is not significant, the 2,652 permutations are divided by the 2 ways of ordering two cards.) Alternatively, the number of possible starting hands is represented as the binomial coefficientThe 1,326 starting hands can be reduced for purposes of determining the probability of starting hands for Hold 'em—since suits have no relative value in poker, many of these hands are identical in value before the flop. The only factors determining the strength of a starting hand are the ranks of the cards and whether the cards share the same suit. Of the 1,326 combinations, there are 169 distinct starting hands grouped into three shapes: 13 pocket pairs (paired hole cards), 13 × 12 ÷ 2 = 78 suited hands and 78 unsuited hands; 13 + 78 + 78 = 169. The relative probability of being dealt a hand of each given shape is different. The following shows the probabilities and odds of being dealt each type of starting hand.

Hand shape Number
of handsSuit combinations
for each handCombinations Dealt specific hand Dealt any hand Probability Odds Probability Odds Pocket pair 13 13 × 6 = 78 220 : 1 16 : 1 Suited cards 78 78 × 4 = 312 331 : 1 3.25 : 1 Unsuited cards non paired 78 78 × 12 = 936 110 : 1 1.417 : 1

Hand Probability Odds AKs (or any specific suited cards) 0.00302 331 : 1 AA (or any specific pair) 0.00452 220 : 1 AKs, KQs, QJs, or JTs (suited cards) 0.0121 81.9 : 1 AK (or any specific nonpair incl. suited) 0.0121 81.9 : 1 AA, KK, or QQ 0.0136 72.7 : 1 AA, KK, QQ or JJ 0.0181 54.3 : 1 Suited cards, jack or better 0.0181 54.3 : 1 AA, KK, QQ, JJ, or TT 0.0226 43.2 : 1 Suited cards, 10 or better 0.0302 32.2 : 1 Suited connectors 0.0392 24.5 : 1 Connected cards, 10 or better 0.0483 19.7 : 1 Any 2 cards with rank at least queen 0.0498 19.1 : 1 Any 2 cards with rank at least jack 0.0905 10.1 : 1 Any 2 cards with rank at least 10 0.143 5.98 : 1 Connected cards (cards of consecutive rank) 0.157 5.38 : 1 Any 2 cards with rank at least 9 0.208 3.81 : 1 Not connected nor suited, at least one 29 0.534 0.873 : 1
[edit] Starting hands heads up
For any given starting hand, there are 50 × 49 ÷ 2 = 1,225 hands that an opponent can have before the flop. (After the flop, the number of possible hands an opponent can have is reduced by the three community cards revealed on the flop to 47 × 46 ÷ 2 = 1,081 hands.) Therefore, there areIt is useful and interesting to know how two starting hands compete against each other heads up before the flop. In other words, we assume that neither hand will fold, and we will see a showdown. This situation occurs quite often in no limit and tournament play. Also, studying these odds helps to demonstrate the concept of hand domination, which is important in all community card games.
This problem is considerably more complicated than determining the frequency of dealt hands. To see why, note that given both hands, there are 48 remaining unseen cards. Out of these 48 cards, we can choose any 5 to make a board. Thus, there are
The problem is trivial for computers to solve by brute force search; there are many software programs available that will compute the odds in seconds. A somewhat less trivial exercise is an exhaustive analysis of all of the headtohead match ups in Texas Hold 'em, which requires evaluating each possible board for each distinct headtohead match up, or 1,712,304 × 207,025 = 354,489,735,600 (≈354 billion) results.^{[2]}
[edit] Headtohead starting hand matchups
When comparing two starting hands, the headtohead probability describes the likelihood of one hand beating the other after all of the cards have come out. Headtohead probabilities vary slightly for each particular distinct starting hand matchup, but the approximate average probabilities, as given by Dan Harrington in Harrington on Hold'em [p. 125], are summarized in the following table.An important thing to notice is that a pocket pair is only a preflop underdog to a higher pocket pair.

Favoritetounderdog matchup Probability Odds for Pair vs. 2 undercards 0.83 4.9 : 1 Pair vs. lower pair 0.82 4.5 : 1 Pair vs. 1 overcard, 1 undercard 0.71 2.5 : 1 2 overcards vs. 2 undercards 0.63 1.7 : 1 Pair vs. 2 overcards 0.55 1.2 : 1
 Suited or unsuited starting hands;
 Shared suits between starting hands;
 Connectedness of nonpair starting hands;
 Proximity of card ranks between the starting hands (lowering straight potential);
 Proximity of card ranks toward A or 2 (lowering straight potential);
 Possibility of split pot.
The mathematics for computing all of the possible matchups is quite complex. However, a computer program can perform a brute force evaluation of the 1,712,304 possible boards for any given pair of starting hands in seconds.
[edit] Starting hands against multiple opponents
When facing two opponents, for any given starting hand the number of possible combinations of hands the opponents can have is or alternatively

Opponents Number of possible hand combinations 1 1,225 2 690,900 3 238,360,500 4 56,372,258,250 5 ≈9.7073 × 10^{12} (more than 9 trillion) 6 ≈1.2620 × 10^{15} (more than 1 quadrillion) 7 ≈1.2674 × 10^{17} (more than 126 quadrillion) 8 ≈9.9804 × 10^{18} (almost 10 quintillion) 9 ≈6.2211 × 10^{20} (more than 622 quintillion)
 (more than 21 octillion).
[edit] Dominated hands
When evaluating a hand before the flop, it is useful to have some idea of how likely the hand is dominated. A dominated hand is a hand that is beaten by another hand (the dominant hand) and is extremely unlikely to win against it. Often the dominated hand has only a single card rank that can improve the dominated hand to beat the dominant hand (not counting straights and flushes). For example, KJ is dominated by KQ—both hands share the king, and the queen kicker is beating the jack kicker. Barring a straight or flush, the KJ will need a jack on the board to improve against the KQ (and would still be losing if a queen appears on the board along with the jack). A pocket pair is dominated by a pocket pair of higher rank.[edit] Pocket pairs
Barring a straight or flush, a pocket pair needs to make three of a kind to beat a higher pocket pair. See the section "After the flop" for the odds of a pocket pair improving to three of a kind.To calculate the probability that another player has a higher pocket pair, first consider the case against a single opponent. The probability that a single opponent has a higher pair can be stated as the probability that the first card dealt to the opponent is a higher rank than the pocket pair and the second card is the same rank as the first. Where r is the rank of the pocket pair (assigning values from 2–10 and J–A = 11–14), there are (14 − r) × 4 cards of higher rank. Subtracting the two cards for the pocket pair leaves 50 cards in the deck. After the first card is dealt to the player there are 49 cards left, 3 of which are the same rank as the first. So the probability P of a single opponent being dealt a higher pocket pair is
 Multiply the base probability for a single player for a given rank of pocket pairs by the number of opponents in the hand;
 Subtract the adjusted probability that more than one opponent has a higher pocket pair. (This is necessary because this probability effectively gets added to the calculation multiple times when multiplying the single player result.
The following table shows the probability that before the flop another player has a larger pocket pair when there are one to nine other players in the hand.

Probability of facing a
larger pair when holdingAgainst 1 Against 2 Against 3 Against 4 Against 5 Against 6 Against 7 Against 8 Against 9 KK 0.0049 0.0098 0.0147 0.0196 0.0244 0.0293 0.0342 0.0391 0.0439 QQ 0.0098 0.0195 0.0292 0.0388 0.0484 0.0579 0.0673 0.0766 0.0859 JJ 0.0147 0.0292 0.0436 0.0577 0.0717 0.0856 0.0992 0.1127 0.1259 TT 0.0196 0.0389 0.0578 0.0764 0.0946 0.1124 0.1299 0.1470 0.1637 99 0.0245 0.0484 0.0718 0.0946 0.1168 0.1384 0.1593 0.1795 0.1990 88 0.0294 0.0580 0.0857 0.1125 0.1384 0.1634 0.1873 0.2101 0.2318 77 0.0343 0.0674 0.0994 0.1301 0.1595 0.1874 0.2138 0.2387 0.2619 66 0.0392 0.0769 0.1130 0.1473 0.1799 0.2104 0.2389 0.2651 0.2890 55 0.0441 0.0862 0.1263 0.1642 0.1996 0.2324 0.2623 0.2892 0.3129 44 0.0490 0.0956 0.1395 0.1806 0.2186 0.2532 0.2841 0.3109 0.3334 33 0.0539 0.1048 0.1526 0.1967 0.2370 0.2729 0.3040 0.3300 0.3503 22 0.0588 0.1141 0.1654 0.2124 0.2546 0.2914 0.3222 0.3464 0.3633

Probability of facing multiple
larger pairs when holdingAgainst 2 Against 3 Against 4 Against 5 Against 6 Against 7 Against 8 Against 9 KK < 0.00001 0.00001 0.00003 0.00004 0.00007 0.00009 0.00012 0.00016 QQ 0.00006 0.00018 0.00037 0.00061 0.00091 0.00128 0.00171 0.00220 JJ 0.00017 0.00051 0.00102 0.00171 0.00257 0.00360 0.00482 0.00621 TT 0.00033 0.00099 0.00200 0.00335 0.00504 0.00709 0.00950 0.01226 99 0.00054 0.00164 0.00330 0.00553 0.00836 0.01177 0.01580 0.02045 88 0.00081 0.00244 0.00493 0.00828 0.01253 0.01769 0.02378 0.03084 77 0.00112 0.00341 0.00689 0.01160 0.01758 0.02487 0.03351 0.04353 66 0.00149 0.00454 0.00918 0.01550 0.02353 0.03335 0.04503 0.05861 55 0.00191 0.00583 0.01182 0.01998 0.03040 0.04318 0.05840 0.07619 44 0.00239 0.00728 0.01480 0.02506 0.03821 0.05438 0.07371 0.09635 33 0.00291 0.00890 0.01812 0.03075 0.04698 0.06699 0.09099 0.11919 22 0.00349 0.01068 0.02180 0.03706 0.05673 0.08107 0.11034 0.14484
[edit] Hands with one ace
When holding a single ace (referred to as Ax), it is useful to know how likely it is that another player has a better ace—an ace with a higher second card. The weaker ace is dominated by the better ace. The probability that a single opponent has a better ace is the probability that he has either AA or Ax where x is a rank other than ace that is higher than the player's second card. When holding Ax, the probability that a chosen single player has AA is . In the case of a table with n opponents, the probability of one of them holding AA is (1 − (1 − 0.00245)^{n}). If the player is holding Ax against 9 opponents, there is a probability of approximately 0.0218 that one opponent has AA.Where x is the rank 2–K of the second card (assigning values from 2–10 and J–K = 11–13) the probability that a single opponent has a better ace is calculated by the formula
The following table shows the probability that before the flop another player has an ace with a larger kicker in the hand.

Probability of facing an ace
with larger kicker when holdingAgainst 1 Against 2 Against 3 Against 4 Against 5 Against 6 Against 7 Against 8 Against 9 AK 0.00245 0.00489 0.00733 0.00976 0.01219 0.01460 0.01702 0.01942 0.02183 AQ 0.01224 0.02434 0.03629 0.04809 0.05974 0.07126 0.08263 0.09386 0.10496 AJ 0.02204 0.04360 0.06468 0.08529 0.10545 0.12517 0.14445 0.16331 0.18175 AT 0.03184 0.06266 0.09250 0.12139 0.14937 0.17645 0.20267 0.22805 0.25263 A9 0.04163 0.08153 0.11977 0.15642 0.19154 0.22520 0.25745 0.28837 0.31799 A8 0.05143 0.10021 0.14649 0.19038 0.23202 0.27152 0.30898 0.34452 0.37823 A7 0.06122 0.11870 0.17266 0.22331 0.27086 0.31550 0.35741 0.39675 0.43369 A6 0.07102 0.13700 0.19829 0.25523 0.30812 0.35726 0.40291 0.44531 0.48471 A5 0.08082 0.15510 0.22338 0.28615 0.34384 0.39687 0.44561 0.49041 0.53160 A4 0.09061 0.17301 0.24795 0.31609 0.37806 0.43442 0.48567 0.53227 0.57465 A3 0.10041 0.19073 0.27199 0.34509 0.41085 0.47000 0.52322 0.57109 0.61416 A2 0.11020 0.20826 0.29552 0.37315 0.44223 0.50370 0.55840 0.60706 0.65037
[edit] The flop
The value of a starting hand can change dramatically after the flop. Regardless of initial strength, any hand can flop the nuts—for example, if the flop comes with three 2s, any hand holding the fourth 2 has the nuts (though additional cards could still give another player a higher four of a kind or a straight flush). Conversely, the flop can undermine the perceived strength of any hand—a player holding A♣ A♥ would not be happy to see 8♠ 9♠ 10♠ on the flop because of the straight and flush possibilities.There are
The following are some general probabilities about what can occur on the board. These assume a "random" starting hand for the player.

Board consisting of Making on flop Making by turn Making by river Prob. Odds Prob. Odds Prob. Odds Three or more of same suit 0.05177 18.3 : 1 0.13522 6.40 : 1 0.23589 3.24 : 1 Four or more of same suit
0.01056 93.7 : 1 0.03394 28.5 : 1 Rainbow flop (all different suits) 0.39765 1.51 : 1 0.10550 8.48 : 1
Three cards of consecutive rank (but not four consecutive) 0.03475 27.8 : 1 0.11820 7.46 : 1 0.25068 2.99 : 1 Four cards to a straight (but not five)
0.03877 24.8 : 1 0.18991 4.27 : 1 Three or more cards of consecutive rank and same suit 0.00217 459 : 1 0.00869 114 : 1 0.02172 45.0 : 1 Three of a kind (but not a full house or four of a kind) 0.00235 424 : 1 0.00935 106 : 1 0.02128 46 : 1 A pair (but not two pair or three or four of a kind) 0.16941 4.90 : 1 0.30417 2.29 : 1 0.42450 1.36 : 1 Two pair (but not a full house)
0.01037 95.4 : 1 0.04716 20.2 : 1
[edit] Flopping overcards when holding a pocket pair
It is also useful to look at the chances different starting hands have of either improving on the flop, or of weakening on the flop. One interesting circumstance concerns pocket pairs. When holding a pocket pair, overcards (cards of higher rank than the pair) weaken the hand because of the potential that an overcard has paired a card in an opponent's hand. The hand gets worse the more overcards there are on the board and the more opponents that are in the hand because the probability that one of the overcards has paired a hole card increases. To calculate the probability of no overcard, take the total number of outcomes without an overcard divided by the total number of outcomes.Where x is the rank 3–K of the pocket pair (assigning values from 3–10 and J–K = 11–13), then the number of overcards is and the number of cards of rank x or less is . The number of outcomes without an overcard is the number of combinations that can be formed with the remaining cards, so the probability P of an overcard on the flop is
 and respectively.

Holding pocket pair No overcard on flop No overcard by turn No overcard by river Prob. Odds Prob. Odds Prob. Odds KK 0.7745 0.29 : 1 0.7086 0.41 : 1 0.6470 0.55 : 1 QQ 0.5857 0.71 : 1 0.4860 1.06 : 1 0.4015 1.49 : 1 JJ 0.4304 1.32 : 1 0.3205 2.12 : 1 0.2369 3.22 : 1 TT 0.3053 2.28 : 1 0.2014 3.97 : 1 0.1313 6.61 : 1 99 0.2071 3.83 : 1 0.1190 7.40 : 1 0.0673 13.87 : 1 88 0.1327 6.54 : 1 0.0649 14.40 : 1 0.0310 31.21 : 1 77 0.0786 11.73 : 1 0.0318 30.48 : 1 0.0124 79.46 : 1 66 0.0416 23.02 : 1 0.0133 74.26 : 1 0.0040 246.29 : 1 55 0.0186 52.85 : 1 0.0043 229.07 : 1 0.0009 1,057.32 : 1 44 0.0061 162.33 : 1 0.0009 1,095.67 : 1 0.0001 8,406.78 : 1 33 0.0010 979.00 : 1 0.0001 15,352.33 : 1 0.0000 353,125.67 : 1
Notice, though, that those probabilities would be lower if we consider that at least one opponent happens to hold one of those overcards.
[edit] After the flop  outs
During play—that is, from the flop and onwards—drawing probabilities come down to a question of outs. All situations which have the same number of outs have the same probability of improving to a winning hand over any unimproved hand held by an opponent. For example, an inside straight draw (e.g. 3467 missing the 5 for a straight), and a full house draw (e.g. 66KK drawing for one of the pairs to become threeofakind) are equivalent. Each can be satisfied by four cards—four 5s in the first case, and the other two 6s and other two kings in the second.The probabilities of drawing these outs are easily calculated. At the flop there remain 47 unseen cards, so the probability is (outs ÷ 47). At the turn there are 46 unseen cards so the probability is (outs ÷ 46). The cumulative probability of making a hand on either the turn or river can be determined as the complement of the odds of not making the hand on the turn and not on the river. The probability of not drawing an out is (47 − outs) ÷ 47 on the turn and (46 − outs) ÷ 46 on the river; taking the complement of these conditional probabilities gives the probability of drawing the out by the river which is calculated by the formula

Example drawing to Outs Make on turn Make on river Make on turn or river Prob. Odds Prob. Odds Prob. Odds Inside straight flush; Four of a kind 1 0.0213 46.0 : 1 0.0217 45.0 : 1 0.0426 22.5 : 1 Openended straight flush; Three of a kind 2 0.0426 22.5 : 1 0.0435 22.0 : 1 0.0842 10.9 : 1 High pair 3 0.0638 14.7 : 1 0.0652 14.3 : 1 0.1249 7.01 : 1 Inside straight; Full house 4 0.0851 10.7 : 1 0.0870 10.5 : 1 0.1647 5.07 : 1 Three of a kind or two pair 5 0.1064 8.40 : 1 0.1087 8.20 : 1 0.2035 3.91 : 1 Either pair 6 0.1277 6.83 : 1 0.1304 6.67 : 1 0.2414 3.14 : 1 Full house or four of a kind; ^{(see note)}
Inside straight or high pair7 0.1489 5.71 : 1 0.1522 5.57 : 1 0.2784 2.59 : 1 Openended straight 8 0.1702 4.88 : 1 0.1739 4.75 : 1 0.3145 2.18 : 1 Flush 9 0.1915 4.22 : 1 0.1957 4.11 : 1 0.3497 1.86 : 1 Inside straight or pair 10 0.2128 3.70 : 1 0.2174 3.60 : 1 0.3839 1.60 : 1 Openended straight or high pair 11 0.2340 3.27 : 1 0.2391 3.18 : 1 0.4172 1.40 : 1 Inside straight or flush; Flush or high pair 12 0.2553 2.92 : 1 0.2609 2.83 : 1 0.4496 1.22 : 1
13 0.2766 2.62 : 1 0.2826 2.54 : 1 0.4810 1.08 : 1 Openended straight or pair 14 0.2979 2.36 : 1 0.3043 2.29 : 1 0.5116 0.955 : 1 Openended straight or flush; Flush or pair;
Inside straight, flush or high pair15 0.3191 2.13 : 1 0.3261 2.07 : 1 0.5412 0.848 : 1
16 0.3404 1.94 : 1 0.3478 1.88 : 1 0.5698 0.755 : 1
17 0.3617 1.76 : 1 0.3696 1.71 : 1 0.5976 0.673 : 1 Inside straight or flush or pair;
Openended straight, flush or high pair18 0.3830 1.61 : 1 0.3913 1.56 : 1 0.6244 0.601 : 1
19 0.4043 1.47 : 1 0.4130 1.42 : 1 0.6503 0.538 : 1
20 0.4255 1.35 : 1 0.4348 1.30 : 1 0.6753 0.481 : 1 Openended straight, flush or pair 21 0.4468 1.24 : 1 0.4565 1.19 : 1 0.6994 0.430 : 1
 Note: When drawing to a full house or four of a kind with a pocket pair that has hit trips (three of a kind) on the flop, there are 6 outs to get a full house by pairing the board and one out to make four of a kind. This means that if the turn does not pair the board or make four of a kind, there will be 3 additional outs on the river, for a total of 10, to pair the turn card and make a full house. This makes the probability of drawing to a full house or four of a kind on the turn or river 0.334 and the odds are 1.99 : 1. This makes drawing to a full house or four of a kind by the river about 8½ outs.
See the article on pot odds for examples of how these probabilities might be used in gameplay decisions.
[edit] Estimating probability of drawing outs  The rule of four and two
Many poker players do not have the mathematical ability to calculate odds in the middle of a poker hand. One solution is to just memorize the odds of drawing outs at the river and turn since these odds are needed frequently for making decisions. Another solution some players use is an easily calculated approximation of the probability for drawing outs, commonly referred to as the "Rule of Four and Two". With two cards to come, the percent chance of hitting x outs is about (x × 4)%. This approximation gives roughly accurate probabilities up to about 12 outs after the flop, with an absolute average error of 0.9%, a maximum absolute error of 3%, a relative average error of 3.5% and a maximum relative error of 6.8%. With one card to come, the percent chance of hitting x is about (x × 2)%. This approximation has a constant relative error of an 8% underestimation, which produces a linearly increasing absolute error of about 1% for each 6 outs.A slightly more complicated, but significantly more accurate approximation of drawing outs after the flop is to use (x × 4)% for up to 9 outs and (x × 3 + 9)% for 10 or more outs. This approximation has a maximum absolute error of less than 1% for 1 to 19 outs and maximum relative error of less than 5% for 2 to 23 outs. A more accurate approximation for the probability of drawing outs after the turn is (x × 2 + (x × 2) ÷ 10)%. This is easily done by first multiplying x by 2, then rounding the result to the nearest multiple of ten and adding the 10's digit to the first result. For example, 12 outs would be 12 × 2 = 24, 24 rounds to 20, so the approximation is 24 + 2 = 26%. This approximation has a maximum absolute error of less than 0.9% for 1 to 19 outs and a maximum relative error of 3.5% for more than 3 outs. The following shows the approximations and their absolute and relative errors for both methods of approximation.

Outs Make on turn or river Make on river Actual (x × 4)% (x × 3 + 9)% Actual (x × 2)% (x × 2 + (x × 2) ÷ 10)% Est. Error % Error Est. Error % Error Est. Error % Error Est. Error % Error 1 4.2553% 4% −0.26% 6.00% 4% −0.26% 6.00% 2.1739% 2% −0.17% 8.00% 2% −0.17% 8.00% 2 8.4181% 8% −0.42% 4.97% 8% −0.42% 4.97% 4.3478% 4% −0.35% 8.00% 4% −0.35% 8.00% 3 12.4884% 12% −0.49% 3.91% 12% −0.49% 3.91% 6.5217% 6% −0.52% 8.00% 7% +0.48% 7.33% 4 16.4662% 16% −0.47% 2.83% 16% −0.47% 2.83% 8.6957% 8% −0.70% 8.00% 9% +0.30% 3.50% 5 20.3515% 20% −0.35% 1.73% 20% −0.35% 1.73% 10.8696% 10% −0.87% 8.00% 11% +0.13% 1.20% 6 24.1443% 24% −0.14% 0.60% 24% −0.14% 0.60% 13.0435% 12% −1.04% 8.00% 13% −0.04% 0.33% 7 27.8446% 28% +0.16% 0.56% 28% +0.16% 0.56% 15.2174% 14% −1.22% 8.00% 15% −0.22% 1.43% 8 31.4524% 32% +0.55% 1.74% 32% +0.55% 1.74% 17.3913% 16% −1.39% 8.00% 18% +0.61% 3.50% 9 34.9676% 36% +1.03% 2.95% 36% +1.03% 2.95% 19.5652% 18% −1.57% 8.00% 20% +0.43% 2.22% 10 38.3904% 40% +1.61% 4.19% 39% +0.61% 1.59% 21.7391% 20% −1.74% 8.00% 22% +0.26% 1.20% 11 41.7206% 44% +2.28% 5.46% 42% +0.28% 0.67% 23.9130% 22% −1.91% 8.00% 24% +0.09% 0.36% 12 44.9584% 48% +3.04% 6.77% 45% +0.04% 0.09% 26.0870% 24% −2.09% 8.00% 26% −0.09% 0.33% 13 48.1036% 52% +3.90% 8.10% 48% −0.10% 0.22% 28.2609% 26% −2.26% 8.00% 29% +0.74% 2.62% 14 51.1563% 56% +4.84% 9.47% 51% −0.16% 0.31% 30.4348% 28% −2.43% 8.00% 31% +0.57% 1.86% 15 54.1166% 60% +5.88% 10.87% 54% −0.12% 0.22% 32.6087% 30% −2.61% 8.00% 33% +0.39% 1.20% 16 56.9843% 64% +7.02% 12.31% 57% +0.02% 0.03% 34.7826% 32% −2.78% 8.00% 35% +0.22% 0.62% 17 59.7595% 68% +8.24% 13.79% 60% +0.24% 0.40% 36.9565% 34% −2.96% 8.00% 37% +0.04% 0.12% 18 62.4422% 72% +9.56% 15.31% 63% +0.56% 0.89% 39.1304% 36% −3.13% 8.00% 40% +0.87% 2.22% 19 65.0324% 76% +10.97% 16.86% 66% +0.97% 1.49% 41.3043% 38% −3.30% 8.00% 42% +0.70% 1.68% 20 67.5301% 80% +12.47% 18.47% 69% +1.47% 2.18% 43.4783% 40% −3.48% 8.00% 44% +0.52% 1.20% 21 69.9352% 84% +14.06% 20.11% 72% +2.06% 2.95% 45.6522% 42% −3.65% 8.00% 46% +0.35% 0.76% 22 72.2479% 88% +15.75% 21.80% 75% +2.75% 3.81% 47.8261% 44% −3.83% 8.00% 48% +0.17% 0.36% 23 74.4681% 92% +17.53% 23.54% 78% +3.53% 4.74% 50.0000% 46% −4.00% 8.00% 51% +1.00% 2.00%
[edit] Runnerrunner outs
Some outs for a hand require drawing an out on both the turn and the river—making two consecutive outs is called a runnerrunner. Examples would be needing two cards to make a straight, flush, or three or four of a kind. Runnerrunner outs can either draw from a common set of outs or from disjoint sets of outs. Two disjoint outs can either be conditional or independent events.[edit] Common outs
Drawing to a flush is an example of drawing from a common set of outs. Both the turn and river need to be the same suit, so both outs are coming from a common set of outs—the set of remaining cards of the desired suit. After the flop, if x is the number of common outs, the probability P of drawing runnerrunner outs isThe following table shows the probability and odds of making a runnerrunner from a common set of outs and the equivalent normal outs.

Likely drawing to Common outs Probability Odds Equivalent outs Four of a kind (with pair)
Insideonly straight flush2 0.00093 1,080 : 1 0.02 Three of a kind (with no pair) 3 0.00278 359 : 1 0.07
4 0.00556 179 : 1 0.13
5 0.00925 107 : 1 0.22 Two pair or three of a kind (with no pair) 6 0.01388 71.1 : 1 0.33
7 0.01943 50.5 : 1 0.46
8 0.02590 37.6 : 1 0.61
9 0.03330 29.0 : 1 0.78 Flush 10 0.04163 23.0 : 1 0.98
[edit] Disjoint outs
Two outs are disjoint when there are no common cards between the set of cards needed for the first out and the set of cards needed for the second out. The outs are independent of each other if it does not matter which card comes first, and one card appearing does not affect the probability of the other card appearing except by changing the number of remaining cards; an example is drawing two cards to an inside straight. The outs are conditional on each other if the number of outs available for the second card depends on the first card; an example is drawing two cards to an outside straight.After the flop, if x is the number of independent outs for one card and y is the number of outs for the second card, then the probability P of making the runnerrunner is
The probability of making a conditional runnerrunner depends on the condition. For example, a player holding 9♥ 10♥ after the flop 8♦ 2♠ A♣ can make a straight with {J, Q}, {7, J} or {6, 7}. The number of outs for the second card is conditional on the first card—a Q or 6 (8 cards) on the first card leaves only 4 outs (J or 7, respectively) for the second card, while a J or 7 (8 cards) for the first card leaves 8 outs ({Q, 7} or {J, 6}, respectively) for the second card. The probability P of a runnerrunner straight for this hand is calculated by the equation

Drawing to Probability Odds Equivalent outs Outside straight 0.04440 21.5 : 1 1.04 Inside+outside straight 0.02960 32.8 : 1 0.70 Insideonly straight 0.01480 66.6 : 1 0.35 Outside straight flush 0.00278 359 : 1 0.07 Inside+outside straight flush 0.00185 540 : 1 0.04
 Outside straight and straight flush
 Drawing to a sequence of three cards of consecutive rank from 345 to 10JQ where two cards can be added to either end of the sequence to make a straight or straight flush.
 Inside+outside straight and straight flush
 Drawing to a straight or straight flush where one required rank can be combined with one of two other ranks to make the hand. This includes sequences like 578 which requires a 6 plus either a 4 or 9 as well as the sequences JQK, which requires a 10 plus either a 9 or A, and 234 which requires a 5 plus either an A or 6.
 Insideonly straight and straight flush
 Drawing to a straight or straight flush where there are only two ranks that make the hand. This includes hands such as 579 which requires a 6 and an 8 as well as A23 which requires a 4 and a 5.
[edit] Compound outs
The strongest runnerrunner probabilities lie with hands that are drawing to multiple hands with different runnerrunner combinations. These include hands that can make a straight, flush or straight flush, as well as four of a kind or a full house. Calculating these probabilities requires adding the compound probabilities for the various outs, taking care to account for any shared hands. For example, if P_{s} is the probability of a runnerrunner straight, P_{f} is the probability of a runnerrunner flush, and P_{sf} is the probability of a runnerrunner straight flush, then the compound probability P of getting one of these hands is P = P_{s} + P_{f} − P_{sf}.
The following table gives the compound probability and odds of making a runnerrunner for common situations and the equivalent normal outs.

Drawing to Probability Odds Equivalent outs Flush, outside straight or straight flush 0.08326 11.0 : 1 1.98 Flush, inside+outside straight or straight flush 0.06938 13.4 : 1 1.65 Flush, insideonly straight or straight flush 0.05550 17.0 : 1 1.30